3.14.10 \(\int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx\) [1310]

3.14.10.1 Optimal result
3.14.10.2 Mathematica [A] (verified)
3.14.10.3 Rubi [F]
3.14.10.4 Maple [F]
3.14.10.5 Fricas [F]
3.14.10.6 Sympy [F]
3.14.10.7 Maxima [F]
3.14.10.8 Giac [F]
3.14.10.9 Mupad [F(-1)]

3.14.10.1 Optimal result

Integrand size = 25, antiderivative size = 301 \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\frac {\operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a-i b}\right ) (a+b \tan (e+f x))^{1+m}}{2 (i a+b) (c-i d)^2 f (1+m)}-\frac {\operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a+i b}\right ) (a+b \tan (e+f x))^{1+m}}{2 (i a-b) (c+i d)^2 f (1+m)}-\frac {d^2 \left (2 a c d-b \left (c^2 (2-m)-d^2 m\right )\right ) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,-\frac {d (a+b \tan (e+f x))}{b c-a d}\right ) (a+b \tan (e+f x))^{1+m}}{(b c-a d)^2 \left (c^2+d^2\right )^2 f (1+m)}+\frac {d^2 (a+b \tan (e+f x))^{1+m}}{(b c-a d) \left (c^2+d^2\right ) f (c+d \tan (e+f x))} \]

output
1/2*hypergeom([1, 1+m],[2+m],(a+b*tan(f*x+e))/(a-I*b))*(a+b*tan(f*x+e))^(1 
+m)/(I*a+b)/(c-I*d)^2/f/(1+m)-1/2*hypergeom([1, 1+m],[2+m],(a+b*tan(f*x+e) 
)/(a+I*b))*(a+b*tan(f*x+e))^(1+m)/(I*a-b)/(c+I*d)^2/f/(1+m)-d^2*(2*a*c*d-b 
*(c^2*(2-m)-d^2*m))*hypergeom([1, 1+m],[2+m],-d*(a+b*tan(f*x+e))/(-a*d+b*c 
))*(a+b*tan(f*x+e))^(1+m)/(-a*d+b*c)^2/(c^2+d^2)^2/f/(1+m)+d^2*(a+b*tan(f* 
x+e))^(1+m)/(-a*d+b*c)/(c^2+d^2)/f/(c+d*tan(f*x+e))
 
3.14.10.2 Mathematica [A] (verified)

Time = 4.52 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.88 \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\frac {(a+b \tan (e+f x))^{1+m} \left (-\frac {i \left (\frac {(c+i d)^2 (-b c+a d) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a-i b}\right )}{a-i b}+\frac {(c-i d)^2 (b c-a d) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {a+b \tan (e+f x)}{a+i b}\right )}{a+i b}\right )}{\left (c^2+d^2\right ) (1+m)}-\frac {2 d^2 \left (2 a c d+b c^2 (-2+m)+b d^2 m\right ) \operatorname {Hypergeometric2F1}\left (1,1+m,2+m,\frac {d (a+b \tan (e+f x))}{-b c+a d}\right )}{(-b c+a d) \left (c^2+d^2\right ) (1+m)}-\frac {2 d^2}{c+d \tan (e+f x)}\right )}{2 (-b c+a d) \left (c^2+d^2\right ) f} \]

input
Integrate[(a + b*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^2,x]
 
output
((a + b*Tan[e + f*x])^(1 + m)*(((-I)*(((c + I*d)^2*(-(b*c) + a*d)*Hypergeo 
metric2F1[1, 1 + m, 2 + m, (a + b*Tan[e + f*x])/(a - I*b)])/(a - I*b) + (( 
c - I*d)^2*(b*c - a*d)*Hypergeometric2F1[1, 1 + m, 2 + m, (a + b*Tan[e + f 
*x])/(a + I*b)])/(a + I*b)))/((c^2 + d^2)*(1 + m)) - (2*d^2*(2*a*c*d + b*c 
^2*(-2 + m) + b*d^2*m)*Hypergeometric2F1[1, 1 + m, 2 + m, (d*(a + b*Tan[e 
+ f*x]))/(-(b*c) + a*d)])/((-(b*c) + a*d)*(c^2 + d^2)*(1 + m)) - (2*d^2)/( 
c + d*Tan[e + f*x])))/(2*(-(b*c) + a*d)*(c^2 + d^2)*f)
 
3.14.10.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2}dx\)

\(\Big \downarrow \) 4052

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}-\frac {\int -\frac {(a+b \tan (e+f x))^m \left (b c^2-a d c-b d^2 m \tan ^2(e+f x)-b d^2 m-d (b c-a d) \tan (e+f x)\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int -\frac {(a+b \tan (e+f x))^m \left (b d^2 m \tan ^2(e+f x)+d (b c-a d) \tan (e+f x)+a c d-b \left (c^2-d^2 m\right )\right )}{c+d \tan (e+f x)}dx}{\left (c^2+d^2\right ) (b c-a d)}+\frac {d^2 (a+b \tan (e+f x))^{m+1}}{f \left (c^2+d^2\right ) (b c-a d) (c+d \tan (e+f x))}\)

input
Int[(a + b*Tan[e + f*x])^m/(c + d*Tan[e + f*x])^2,x]
 
output
$Aborted
 

3.14.10.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4052
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c 
+ d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + Simp[1 
/((m + 1)*(a^2 + b^2)*(b*c - a*d))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + 
d*Tan[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - 
 a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x], x], x] / 
; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] 
 && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || Integ 
erQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 
3.14.10.4 Maple [F]

\[\int \frac {\left (a +b \tan \left (f x +e \right )\right )^{m}}{\left (c +d \tan \left (f x +e \right )\right )^{2}}d x\]

input
int((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x)
 
output
int((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x)
 
3.14.10.5 Fricas [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x, algorithm="fricas")
 
output
integral((b*tan(f*x + e) + a)^m/(d^2*tan(f*x + e)^2 + 2*c*d*tan(f*x + e) + 
 c^2), x)
 
3.14.10.6 Sympy [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int \frac {\left (a + b \tan {\left (e + f x \right )}\right )^{m}}{\left (c + d \tan {\left (e + f x \right )}\right )^{2}}\, dx \]

input
integrate((a+b*tan(f*x+e))**m/(c+d*tan(f*x+e))**2,x)
 
output
Integral((a + b*tan(e + f*x))**m/(c + d*tan(e + f*x))**2, x)
 
3.14.10.7 Maxima [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x, algorithm="maxima")
 
output
integrate((b*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c)^2, x)
 
3.14.10.8 Giac [F]

\[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int { \frac {{\left (b \tan \left (f x + e\right ) + a\right )}^{m}}{{\left (d \tan \left (f x + e\right ) + c\right )}^{2}} \,d x } \]

input
integrate((a+b*tan(f*x+e))^m/(c+d*tan(f*x+e))^2,x, algorithm="giac")
 
output
integrate((b*tan(f*x + e) + a)^m/(d*tan(f*x + e) + c)^2, x)
 
3.14.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (e+f x))^m}{(c+d \tan (e+f x))^2} \, dx=\int \frac {{\left (a+b\,\mathrm {tan}\left (e+f\,x\right )\right )}^m}{{\left (c+d\,\mathrm {tan}\left (e+f\,x\right )\right )}^2} \,d x \]

input
int((a + b*tan(e + f*x))^m/(c + d*tan(e + f*x))^2,x)
 
output
int((a + b*tan(e + f*x))^m/(c + d*tan(e + f*x))^2, x)